A Theory of Countercyclical Government Multiplier

Pascal Michaillat

AEJ: Macroeconomics, 2014
the government multiplier seems countercyclical

- US evidence:
 - Auerbach & Gorodnichenko [2012]
 - Candelon & Lieb [2013]
 - Fazzari, Morley, & Panovska [2015]

- international evidence:
 - Auerbach & Gorodnichenko [2013]
 - Jorda & Taylor [2016]
 - Holden & Sparrman [2016]
existing explanations

- the multiplier is large at the zero lower bound on the nominal interest rate
 - Eggertsson [2011]
 - Christiano, Eichenbaum, & Rebelo [2011]
 - Eggertsson & Krugman [2012]

- but evidence of countercyclical multipliers is obtained away from the zero lower bound
in this paper

- the government multiplier doubles when unemployment rises from 5% to 8%
 - irrespective of the zero lower bound
- mechanism based on the matching model of the labor market from Michaillat [2012]
 - unemployment = rationing + frictional
- multiplier \equiv additional number of workers employed when 1 worker is hired in the public sector
public employment: main component of government consumption

- public employment = 63% of government consumption expenditures in the US, 1947–2011
 - even more if purchase of services (contractors) are included
- stimulus packages often raise public employment
 - example: Great Depression in the US
 - see Neumann, Fishback, & Kantor [2010]
the mechanism: crowding out

- public employment crowds out private employment
 - because government and firms compete for the same unemployed workers
- formally, an increase in public employment
 - raises labor market tightness
 - thus raises recruiting costs
 - which reduces private employment
the mechanism: bad times / good times

- **bad times**: labor demand is low so unemployment is high and competition for workers is weak
 - weak crowding out
- **good times**: labor demand is high so unemployment is low and competition for workers is strong
 - strong crowding out
- procyclical crowding out \Rightarrow countercyclical multiplier
a matching model
with public employment
public employment

- the government employs g_t workers
 - public employment is financed by an income tax
- public and private jobs are identical
 - same wage w
 - same job-separation rate s
- unemployed workers indiscriminately apply to public and private jobs
- public and private vacancies compete for the same unemployed workers
matching structure

u unemployed workers

ν vacancies
matching structure

u unemployed workers

h newly employed workers

CRS matching function: $h = h(u, v)$

h newly filled jobs

ν vacancies
matching structure

\[\theta = \frac{v}{u} \]

job-finding probability:
\[f(\theta) = \frac{h}{u} = m \cdot \theta^{1-\eta} \]

vacancy-filling probability:
\[q(\theta) = \frac{h}{v} = m \cdot \theta^{-\eta} \]
worker flows: job creation and separation

1 - u_t employed workers

u_t unemployed workers
worker flows: job creation and separation

\[f(\theta_t) \times u_t \]

\(n_t \) employed workers

\(u_t \) unemployed workers
worker flows: job creation and separation

\[-s \times n_t \]

\(n_t \) employed workers

\(u_{t+1} \) unemployed workers
labor supply

- given θ, the labor supply is workers’ employment rate when labor market flows are balanced

- balanced flows: $E \rightarrow U = U \rightarrow E$

 - $s \cdot n = f(\theta) \cdot u = f(\theta) \cdot [1 - n + s \cdot n]$

- labor supply:

 $$n^s(\theta) = \frac{f(\theta)}{s + (1 - s) \cdot f(\theta)}$$

- labor supply: equivalent to the Beveridge curve
representative firm

- hires \(l_t - (1 - s) \cdot l_{t-1} \) new workers by posting vacancies
 - cost per vacancy: \(r \cdot a \)
 - vacancy-filling probability: \(q(\theta_t) \)

- employs \(l_t \) workers paid \(w \)

- production function: \(y_t = a \cdot l_t^\alpha \)
 - \(a \): level of technology
 - \(\alpha \in (0, 1] \): marginal returns to labor
firm’s problem

Given wage and tightness \(\{w, \theta_t\} \), the firm chooses employment \(\{l_t\} \) to maximize discounted profits

\[
\sum_{t=0}^{+\infty} \beta^t \cdot \left[a \cdot l_t^\alpha - w \cdot l_t - \frac{r \cdot a}{q(\theta_t)} \cdot \left[l_t - (1 - s) \cdot l_{t-1}\right]\right]
\]

- Production
- Wage bill
- Hiring cost
- New hires
private labor demand

- first-order condition with respect to \(l \) in steady state:

\[
\alpha \cdot \alpha \cdot l^{\alpha - 1} = w + \left[1 - \beta \cdot (1 - s) \right] \cdot \frac{r \cdot a}{q(\theta)}
\]

- marginal product of labor

- wage

- recruiting cost

- given \(\theta \) and \(w \), the private labor demand is firms’ desired employment rate in steady state:

\[
\ell_d(\theta, w) = \left[\frac{1}{\alpha} \cdot \left\{ \frac{w}{a} + \left[1 - \beta \cdot (1 - s) \right] \cdot \frac{r}{q(\theta)} \right\} \right]^{\frac{-1}{1 - \alpha}}
\]
wage schedule

- there are mutual gains from matching
- many wage schedules are consistent with equilibrium
- we assume a simple wage schedule: $w = \omega \cdot a^\gamma$
 - $\gamma = 0$: fixed wage (unresponsive to a)
 - $\gamma = 1$: flexible wage (proportional to a)
 - $\gamma \in (0, 1)$: partially rigid wage (subproportional to a)
aggregate labor demand

- using the wage schedule, we rewrite the private labor demand as a function of θ and a:

\[
l^d(\theta, a) = \left[\frac{1}{\alpha} \cdot \left\{ \omega \cdot a^{\gamma-1} + [1 - \beta \cdot (1 - s)] \cdot \frac{r}{q(\theta)} \right\} \right]^{\frac{-1}{1-\alpha}}
\]

- aggregate labor demand:

\[
n^d(\theta, a, g) = l^d(\theta, a) + g
\]
steady-state equilibrium

- tightness equalizes labor supply and demand:

\[n^s(\theta) = n^d(\theta, a, g) \]

- recession: low technology \(a \)
- expansion: high technology \(a \)
- stimulus: high public employment \(g \)
- note: in matching models, the convergence to steady state is almost immediate [Hall 2005]
equilibrium diagram

\[n^d(\theta, a, g) \quad \text{labour demand} \]

\[n^s(\theta) \quad \text{labour supply} \]

\[\theta \]

\[\theta \]

\[n \]

unemployment

\[1 \]
properties of the multiplier
definition of the multiplier

- the multiplier is $\lambda \equiv \partial n / \partial g$
 - additional number of workers employed when 1 worker is hired in the public sector
- another expression: $\lambda = 1 + \partial l / \partial g$
 - 1: mechanical effect of public employment
 - $\partial l / \partial g < 0$: crowding out of private employment by public employment
 - weaker crowding out \Rightarrow larger multiplier
assumptions

- $\alpha < 1$: the production function has diminishing marginal returns to labor
 - in (n, θ) plane, $n^d(\theta, a, g)$ is downward-sloping
- $\gamma < 1$: the wage is partially rigid
 - in (n, θ) plane, $n^d(\theta, a, g)$ shifts inward when a rises
- these are the assumptions from Michaillat [2012]
properties of the multiplier

under the assumptions that $\alpha < 1$ and $\gamma < 1$:

- the multiplier is > 0 but < 1
 - there is crowding out of private employment by public employment
 - but crowding out is less than one-for-one

- the multiplier is larger when a is lower
 - higher unemployment \Rightarrow larger multiplier
 - because crowding out is weaker
positive multiplier: mechanism

Labor market tightness

Supply

Demand: expansion

Employment n
positive multiplier: mechanism

Labor market tightness vs. Employment n

- Supply
- Demand: expansion
- Demand+stimulus

dg > 0
positive multiplier: mechanism
positive multiplier: mechanism

Supply
Demand: expansion
Demand+stimulus

Labor market tightness vs Employment n

dn > 0
dl < 0
dg > 0
countercyclical multiplier: mechanism

Labor market tightness

Supply
Demand: expansion
Demand+stimulus

dn > 0

dl < 0
dg > 0

Employment n

0.9
0.95
1

1

2

2.0
countercyclical multiplier: mechanism

Employment n
Labor market tightness

Supply
Demand: recession
Demand+stimulus

d$g > 0$
d$n > 0$
d$l < 0$

d$n > 0$
d$l < 0$

d$g > 0$
intuition for the mechanism

- when unemployment is high:
 - the government hires unemployed workers who would not have been hired otherwise
 - so public employment does not affect private employment much

- but when unemployment is low:
 - the government hires workers that would have been hired by the private sector otherwise
 - so public employment heavily crowds out private employment
what happens if $\alpha = 1$?

- $\alpha = 1$: linear production function
 - in (n, θ) plane, the labor demand is horizontal
- if $\alpha = 1$, the multiplier $= 0$
 - a change in g does not change equilibrium θ so crowding out is one-for-one
what happens if $\gamma = 1$?

- $\gamma = 1$: flexible wage
 - the labor demand is independent of a
 - as with Nash bargaining
- if $\gamma = 1$, the multiplier is acyclical
 - unemployment and tightness are independent of a so crowding out is independent of a
a New Keynesian model
standard features

- fluctuations arise from technology shocks

- representative large household
 - works for intermediate-good firms
 - consumes final good
 - saves using nominal bonds

- representative final-good firm
 - uses intermediate goods as input
 - sells output on perfectly competitive market
standard features

- intermediate-good firms
 - use labor as input
 - sell output on monopolistically competitive market to final-good firm
 - set price subject to a price-setting friction

- monetary policy
 - interest-rate rule (Taylor rule)
nonstandard features

- labor market with matching structure from Michaillat [2012]
 - instead of perfect/monopolistic competition
- quadratic price-adjustment cost [Rotemberg 1982]
 - instead of Calvo [1983] pricing
- government consumption is public employment
 - instead of purchase of goods
equilibrium: 9 endogenous variables

- exogenous variables:
 \[\{a_t, g_t\}_{t=0}^{\infty} \]

- endogenous variables:
 \[\{\theta_t, n_t, l_t, w_t, \Lambda_t, c_t, y_t, R_t, \pi_t\}_{t=0}^{\infty} \]
equilibrium: labor market

- equation # 1: wage schedule

 \[w_t = \omega \cdot a_t^\gamma, \quad \gamma < 1 \]

- equation # 2: labor supply

 \[n_t = (1 - s) \cdot n_{t-1} + f(\theta_t) \cdot [1 - (1 - s) \cdot n_{t-1}] \]

- equation # 3: public-employment policy

 \[n_t = l_t + g_t \]
equilibrium: production

- equation # 4: production function

\[y_t = a_t \cdot l_t^\alpha, \quad \alpha < 1 \]

- equation # 5: resource constraint

\[y_t - \frac{r \cdot a_t}{q(\theta_t)} \cdot [n_t - (1 - s) \cdot n_{t-1}] = c_t \cdot \left[1 + \frac{\phi}{2} \cdot \pi_t^2 \right] \]
equilibrium: bond market

- **equation # 6: Euler equation**

 \[1 = \beta \cdot \mathbb{E}_t \left[\frac{R_t}{1 + \pi_{t+1}} \cdot \frac{c_t}{c_{t+1}} \right] \]

- **equation # 7: Taylor rule**

 \[R_t = \frac{1}{\beta} \cdot (1 + \pi_t)^{\mu_r} \cdot (1 - \mu_R) \cdot (\beta \cdot R_{t-1})^{\mu_R} \]
equilibrium: firms

- equation # 8: optimal pricing decision

\[\pi_t \cdot (\pi_t + 1) = \frac{1}{\phi} \cdot \frac{y_t}{c_t} [\varepsilon \cdot \Lambda_t - (\varepsilon - 1)] + \beta \cdot \mathbb{E}_t [\pi_{t+1} \cdot (\pi_{t+1} + 1)] \]

- equation # 9: optimal employment decision

\[\Lambda_t \cdot \alpha \cdot l_t^{\alpha - 1} = \frac{w_t}{a_t} + \frac{r}{q(\theta_t)} - \beta \cdot (1 - s) \cdot \mathbb{E}_t \left[\frac{c_t}{c_{t+1}} \cdot \frac{a_{t+1}}{a_t} \cdot \frac{r}{q(\theta_{t+1})} \right] \]
steady state \((n, \theta)\) with zero inflation

- **Equation # 2**: labor supply

 \[
n^s(\theta) = \frac{f(\theta)}{s + (1 - s) \cdot f(\theta)}
 \]

- **Equation # 8**: \(\Lambda = (\varepsilon - 1)/\varepsilon\)

- **Equation # 1**: \(w = \omega \cdot a^\gamma\)

- **Equation # 9**: firms' labor demand

 \[
 \frac{\varepsilon - 1}{\varepsilon} \cdot \alpha \cdot \left[l^d(\theta, a) \right]^{\alpha - 1}\ = \omega \cdot a^{\gamma - 1} + (1 - \beta \cdot (1 - s)) \cdot \frac{r}{q(\theta)}
 \]

 isomorphic to steady state in matching model
simulations
simulation method

simulate nonlinear model under perfect foresight using shooting algorithm:

- **scenario #1**: public employment without stimulus
 - value of g: $\hat{g}_t = \bar{g}$
 - value of any x: \hat{x}_t
 - solid blue lines in graphs

- **scenario #2**: public employment with stimulus
 - value of g: $g^*_t > \bar{g}$
 - value of any x: x^*_t
 - dashed red lines in graphs
computation of the multiplier

- the instantaneous multiplier in a simulation is

\[
\frac{n_t^* - \hat{n}_t}{g_t^* - \hat{g}_t}
\]

- the cumulative multiplier of a simulation is

\[
\frac{\sum_{t=0}^{T} n_t^* - \hat{n}_t}{\sum_{t=0}^{T} g_t^* - \hat{g}_t}
\]

- cumulative multipliers are parametrized by the peak of the unemployment rate in the simulation
response to positive technology shock

![Graphs showing the response to positive technology shock](image)

- **Technology**: The graph shows a decrease over time, indicating a reduction in technology levels.
- **Public employment**: The graph indicates an increase over time, suggesting an upward trend in public employment.
- **Labor market tightness**: This graph also shows an increase, indicating tightening of the labor market.
- **Private employment**: Similar to public employment, this graph shows an increase over time.
- **Unemployment**: The graph shows a decrease, indicating a reduction in unemployment.
- **Gross domestic product (GDP)**: This graph depicts a decrease over time, reflecting a decline in GDP.
instantaneous multiplier after positive shock
response to negative technology shock

- **Technology**
- **Public employment**
- **Labor market tightness**
- **Private employment**
- **Unemployment**
- **Gross domestic product (GDP)**
instantaneous multiplier after negative shock
counter cyclical cumulative multiplier
countercyclical cumulative multiplier

![Graph showing the relationship between unemployment rate and cumulative multiplier. The graph demonstrates a linear increase in the cumulative multiplier as the unemployment rate increases from 5% to 8%. The cumulative multiplier values range from 0 to 0.5.](image)
conclusion
summary

- this paper proposes a New Keynesian model in which the government multiplier doubles when unemployment rises from 5% to 8%

- mechanism behind countercyclical multiplier:
 - multiplier = 1 – crowding out
 - and crowding out of private employment by public employment is much weaker when unemployment is higher
applications and extensions

- the same mechanism explains the procyclicality of the macroelasticity of unemployment with respect to unemployment insurance
 - see Landais, Michaillat, & Saez [2010]
- the same mechanism applies to the product market
 - see Michaillat & Saez [2015]
- the multiplier determines optimal stimulus spending
 - see Michaillat & Saez [2015]