Optimal Public Expenditure
with Inefficient Unemployment

Pascal Michaillat (Brown)
Emmanuel Saez (Berkeley)

May 2017
should macroeconomic concerns affect policy?

• in practice, they already do:
 – monetary policy
 – unemployment insurance

• but other policies could depend on macroeconomic conditions

• in this paper: public expenditure
existing theories of optimal public expenditure

- Samuelson (1954):
 - public goods financed by lump-sum taxation
 - efficient level of production
 - rule: spend until marginal utilities are equalized
 - what if production is inefficient?

- Keynes:
 - in recession, multiplier of public expenditure > 1
 - rule: spend to fill output gap
 - what happens with multiplier < 1?
 - role of social value of public good? of taxation?
our theory of optimal public expenditure

- blends theories of Samuelson + Keynes
- by embedding Samuelson’s framework into matching model from Michaillat & Saez (2015)
- outcome: a formula linking optimal stimulus spending to
 - unemployment gap
 - unemployment multiplier
 - social value of government consumption
informal description of the model
this is a service economy, without firms
this is a service economy, without firms
this is a service economy, without firms
there is an asset for saving
there are private services \((c)\) and public services \((g)\)
there are private services \((c)\) and public services \((g)\)
matching: it is costly to purchase services
matching: there is unemployment (high or low)
matching: there is unemployment (high or low)
the efficient rate of unemployment is positive

- too much unemployment is bad
 - too many services are idle

- too little unemployment is bad
 - too many services are devoted to recruiting

- there is a positive efficient rate of unemployment \((u^*) \)
 - the number of services enjoyed \((y = g + c) \) is maximized

- when the unemployment rate is efficient, Samuelson rule holds
optimal stimulus spending
formula for optimal stimulus spending

\[\text{stimulus} = A \cdot \frac{\varepsilon \cdot m}{1 + B \cdot \varepsilon \cdot m^2} \cdot (u - u^*) \]

- **stimulus**: public spending - Samuelson spending
- **$u - u^*$**: initial unemployment gap
- **ε**: elasticity of substitution between g and c
 - marginal social value of public spending
- **m**: unemployment multiplier
 - decrease in u when g increases by 1% of y
 - same as output multiplier
sign of stimulus spending, for different unemployment gaps and unemployment multipliers

<table>
<thead>
<tr>
<th></th>
<th>$m < 0$</th>
<th>$m = 0$</th>
<th>$m > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u > u^*$</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
</tr>
<tr>
<td>$u = u^*$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$u < u^*$</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
</tr>
</tbody>
</table>
sign of stimulus spending, for different unemployment gaps and unemployment multipliers

<table>
<thead>
<tr>
<th></th>
<th>$m < 0$</th>
<th>$m = 0$</th>
<th>$m > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u > u^*$</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
</tr>
<tr>
<td>$u = u^*$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$u < u^*$</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
</tr>
</tbody>
</table>
sign of stimulus spending, for different unemployment gaps and unemployment multipliers

<table>
<thead>
<tr>
<th></th>
<th>$m < 0$</th>
<th>$m = 0$</th>
<th>$m > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u > u^*$</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
</tr>
<tr>
<td>$u = u^*$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$u < u^*$</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
</tr>
</tbody>
</table>
sign of stimulus spending, for different unemployment gaps and unemployment multipliers

<table>
<thead>
<tr>
<th></th>
<th>$m < 0$</th>
<th>$m = 0$</th>
<th>$m > 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u > u^*$</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
</tr>
<tr>
<td>$u = u^*$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$u < u^*$</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
</tr>
</tbody>
</table>
numerical illustration:

Great Recession in the US
starting point: winter 2008–2009

- unemployment = 6% and public spending = 16.5% of GDP
 - for illustration: we take these values as efficient
- unemployment is forecast to increase to 9%
 - initial unemployment gap = 9% − 6% = 3%
- we compute optimal stimulus for various elasticities of substitution and unemployment multipliers
optimal stimulus spending (% of GDP)

\[\epsilon = 1 \]
optimal stimulus spending (% of GDP)
optimal stimulus spending (% of GDP)
optimal stimulus spending (% of GDP)

unemployment multiplier

$520 billion
optimal stimulus spending (% of GDP)
optimal stimulus spending (% of GDP)
more on the elasticity of substitution between public and private services

- \(\varepsilon = 0 \): public services = digging holes
 - stimulus = 0

- \(\varepsilon = +\infty \): public services = private services
 - entirely fill unemployment gap

- \(0 < \varepsilon < +\infty \): medium substitution
 - stimulus > 0
 - but only partially fill unemployment gap
unemployment with optimal stimulus

\[\frac{\epsilon}{\text{unemployment multiplier}} = \frac{2}{2} = 1 \]

\[\frac{\epsilon}{\text{unemployment multiplier}} = \frac{1}{2} = 0.5 \]

\[\frac{\epsilon}{\text{unemployment multiplier}} = \frac{0.5}{2} = 0.25 \]
summary and discussion
1. multiplier > 1 is not necessary for stimulus
 - stimulus requires unemployment multiplier > 0 (as in data)

2. bang-for-the-buck logic does not hold
 - same stimulus for $m = 0.1$ and $m = 1.4$

3. completely filling the unemployment gap is not optimal
 - optimal to partially fill unemployment gap
 - except if public services = private services

4. low marginal social value of g does not imply no stimulus
 - optimal to reduce unemployment gap
 - except if public services = digging holes
distortionary taxes do not imply smaller stimulus

- with distortionary taxation, formula remains valid
 - but Samuelson spending is lower
- however, the output multiplier is not useful anymore
 - \(dy/dg = m + \text{labor-supply response to taxes} \)
 - labor-supply distortion reduces \(dy/dg \) but not \(m \)
 - so \(m > dy/dg \), and possibly \(dy/dg < 0 \) while \(m > 0 \)

5. distortionary taxation does not imply smaller stimulus
- only average public spending is lower